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1.   Foreword 

The broad mission of this project was to explore new classes of numerical methods that 
would provide new approaches for modeling complex problems in elastostatics, 
elastodynamics, and wave and impact problems. We believe that two major results 
were obtained in the course of this work: The development of new classes of so called 
Discontinuous Galerkin Methods (DGMs), including the underlying mathematical 
theory, and Generalized Finite Element Methods (GFEMs, also referred to as hp-clouds, 
Partition-of-Unity Methods (PUMs)) for linear and non-linear boundary value problems. 
These new approaches generalize and extend so-called mesh-free techniques and are 
compatible with existing finite element software. At the same time, they demonstrate 
significant improvements in performance over traditional finite element approaches. 
Summaries of work done under each of these topics is given in the body of this final 
report. 

2. Table of Contents 

1. Discontinuous Galerkin Methods 
2. Progress on GFEMs 

3. Appendix 

A Posteriori Error Estimates for the Discontinuous Galerkin Method 

4. Statement of the Problem Studied 

The general class of problems studied in this effort were boundary-and initial-value 
problems in elastodynamics, but applications to broader classes were also considered. 
These included applications in convection-diffusion phenomena, gas dynamics, and 
viscous incompressible flow as modeled by the Navier-Stokes equations. The major goal 
of the work was to develop, analyze, and implement completely new types of methods 
which could overcome numerous shortcomings of existing techniques for treating large 
scale simulations in solid (and fluid) mechanics. Two avenues of research were 
pursued, one involving an attempt to extend our earlier work on Discontinuous 
Galerkin Methods for hyperbolic systems to problems with significant physical diffusion 
terms, and the second to explore new methods that extend and make competitive ideas 
underlying the so-called mesh-free methodologies. We believe that efforts in both of 
these areas were extremely successful. Further details on results and accomplishments 
are given in the following paragraphs. 
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5. Summary of Most Important Results 

The success of such methods as finite elements on a broad class of engineering and 
scientific applications has, in many ways, made obscure several serious limitations of 
these approaches in treating very complex problems of interest in applications involving 
highly nonlinear phenomena and in problems which require high fidelity solutions. Of 
these limitations, first and foremost, is the a long standing problem of developing 
computational methods for transport phenomena: the development of cell-wise 
conservative schemes that can deliver very high-order local accuracy. The search for 
such methods has been "the holy grail" of computational fluid dynamics for over two 
decades and has lead to the large volume of papers concerned with very specialized 
techniques for hyperbolic systems that employ various non-local methods to get high- 
order accuracy. Until recently, none of the existing techniques had sufficient robustness 
or generality to be applicable to important classes of three-dimensional situations. The 
new DGMs not only produce local cell-wise conservative approximative schemes but 
they are also capable of delivering high-order polynomial accuracy. We have applied the 
method successfully to broad classes of simulations including convection diffusion 
problems, three dimensional Euler-equations for compressible flow, 2D incompressible 
Navier-Stokes equations, and we are in the process of implementing the algorithm for 
large scale problems in impact dynamics and penetration mechanics. 

That the new family of Discontinuous Galerkin Methods is applicable to problems with 
diffusion terms was announced in a paper by Oden, Bauman, and Babuska [1] published 
in the Journal of Computational Physics. This particular method leads to an 
unsymmetrical system of equations for the diffusion problem which, experimentally, has 
proved to be robust and has the ability to support high-order local approximations. 
Indeed, hp versions of this technique have been developed which, with adaptivity, can 
yield exponential rates of convergence. The method was the basis of a dissertation of 
Carlos Bauman and his version of the method has become known in the literature as the 
Bauman-Oden Method (BOM). As noted above, the BOM has subsequently been 
extended to a number of significant two and three-dimensional applications, not only in 
computational fluid mechanics, but more recently in treating the hyperbolic coupled 
systems encountered in the imicible displacement equations for porous medium. 
Extensions of the BOM to these problems was the subject of the dissertation of Beatrice 
Riviera [2] and a mathematical analysis of some of its properties have been treated in a 
recent publication by Riviera, Gerault, and Wheeler [3]. In a recent paper, summarized 
in the appendix, proofs of convergence and a priori estimates for the BOM and other 
DGMs have been derived. We also review in the appendix to this report details of the 
formulation and a comparison of this method with other interior penalty methods and 
discontinuous methods that have been subsequently proposed. Special features of the 
method are listed as follows: 

1. Local element polynomial approximations of arbitrary order are constructed over 
each cell providing a basis for local spectral type approximations. 

2. Continuity conditions on the solution values and the fluxes at cell boundaries are 
enforced in a weak form. 

3. A posteriori error indicators have been derived and used in an adaptive procedure 
that has allowed the implementation of the method on non-uniform hp meshes; a 
number test problems have been treated which demonstrate exponential 
convergence. 

4. Most importantly, the scheme is cell-wise conservative, meaning that fluxes are 
balanced on each element; as far as is known by the investigators, this represents the 
first high-order (greater than first or second order) conservative FEM scheme. 



5. A priori and a posteriori error estimates have been derived for linear applications 
including second order elliptic problems, convection diffusion problems in two 
dimensions, and first order hyperbolic problems in two dimensions. The estimated 
convergence rates have been confirmed in several numerical experiments. Tests 
indicate for p-versions of the method, sub-optimal rates are achieved. Since 
publication of our work, a number of new variations of the method have been 
proposed by other authors which include the use of penalized or stabilizing terms 
which may lead to robustness of the scheme and improve rates of convergence, but 
may also destroy the conservation properties of the method. 

6. Three dimensional versions of the BOM have been developed for applications in 
computational fluid dynamics, (as noted above, in particular, Euler-equations and, in 
two dimensions, the incompressible Navier-Stokes equations). These have been 
applied to a significant number of benchmark problems. 

We believe these methods may have important implications for coupled problems in 
nonlinear dynamics. Work remains to be done in deriving sharp a posteriori error 
estimates of these nonlinear problems, including local estimates for quantities of interest. 

Mesh-free, Partition of Unity, and Generalized Finite Element Methods 

Another area explored during the course of this project was the development of new 
families of schemes for treating both linear and nonlinear boundary value problems in 
mechanics and physics. Our work began on this subject in the mid-1990's with the 
development of so-called hp Clouds. These were techniques based on the use of 
Moving-Least-Squares, (MLS) techniques for deriving basis these functions for finite 
dimensional spaces, functions are built on overlapping domains which supported 
polynomials of arbitrary degree. In our earlier work, we were able to develop h, p, and 
hp versions of these techniques and to develop adaptive versions of these schemes that 
demonstrated exponential convergence. 

Subsequent work showed that while these schemes could exhibit extraordinarily high 
rates of convergence they were not competitive with existing finite element and finite 
volume techniques because of the significant expense required in quadrature of the basis 
functions defined on spherical domains. This proved to be expensive and cumbersome 
and required a computational effort that dominated the entire cost of their 
implementation. In general, we have concluded that the cost of generating a partition of 
unity method on the irregular domains using the methods of least square, a common 
step in most of the mesh-free methods now in use, is prohibitive. 

In 1997 and 1998, we began exploring the use of conventional finite element methods as 
a device to generate a partition of unity over a given computational domain. Such an 
approach automatically overcame the quadrature problem, since quadrature points 
were already embedded in the finite element master elements, but they (FEMs) provided 
nodal basis functions on overlapping domains on which high-order polynomial 
approximations and other types of Treffz approximations could be constructed. While 
the resulting methods could not qualify as "mesh-free," they possess a number of very 
desirable properties which ultimately proved to be superior to conventional finite 
element techniques. We have termed these methods GFEMs: Generalized Finite 
Element Methods. They were first reported in papers by Oden, Duarte, and 
Zienkiewicz, and in a one-dimensional case, by Babuska and Melenik [4]. With the 
addition of special functions, these techniques can provide accelerated rates of 



convergence in cases where traditional finite element methods diverge or converge very 
slowly. These include problems in which one has very rough highly oscillatory 
coefficients, boundary layers, interfaces, singularities, and other local features that 
influence convergence. 

One of the most important applications of the GFEM has been in the treatment of crack 
problems and propagation of cracks through domains. We have developed techniques 
for allowing cracks to occur in a given domain and to propagate through the domain 
without altering the original mesh. Commercial engineering software companies have 
expressed interest in our results and one (Altair Engineering) has used these 
methodologies in applications involving two and three-dimensional crack propagation 
problems. Apparently, our techniques have formed the basis of certain versions of 
commercial products that are or soon will be on the market. 

In many of the applications and experimental tests of these GFEMs, performances have 
been observed which are considerably faster and more efficient than traditional finite 
element methods. As noted earlier, one can also cite problems in which these methods 
exhibit extraordinarily high convergence rates while FEMs do not converge at all. The 
subject of GFEM has been further explored in by dissertation by Kevin Copps [5]; it has 
been the subject of a NSF workshop and is a popular topic in conferences on 
computational science and engineering. The full exploitation of these methods in 
treating significant non-linear problems remains to be explored. We feel that one of the 
most important features of GFEMs over some of the recently reported mesh-free 
methods is that they can be easily embedded into existing finite element codes. The 
GFEM, in other words, can be used to add to existing finite element packages the ability 
to treat a long list of special features, particularly the propagation of cracks across fixed 
meshes and the treatment of singularities in boundary layer effects. We have derived a 
priori and a posteriori error estimates for these methods and have developed adaptive 
versions of them. 

One area relative to GFEMs that remains to be more thoroughly explored is the 
development of preconditioners for the method for very large problems, including the 
use of the techniques in a parallel computer environment. Since the GFEM technique 
involves superimposing polynomial type approximations (or, in some cases, special 
functions) on a model-based partition of unity generated by traditional FEMs, in most 
cases rank deficient stiffness matrices are produced. Thus, special techniques must be 
developed to solve the resulting linear systems. We have developed and implemented 
one technique that seems to work satisfactorily, but a great deal of additional theoretical 
work needs to be done to develop fully robust iterative techniques for handling the 
linear systems generated by GFEMs. We believe this problem is solvable, and certainly 
is an area worth further study. 
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A Priori Error Estimation for DGM 

APPENDIX 

1. Introduction 

There has been renewed interest in Discontinuous Galerkin Methods (DGM) re- 
cently, primarily due to the discovery that variants of these methods could be used 
effectively to solve diffusion problems as well as problems of pure convection. One 
such DGM was presented in the dissertation of Baumann [7] and reported in the 
paper of Oden, Babuska, and Baumann [18]; summary of other versions of DGMs 
and a lengthy historical review of this subject can be found in the record volume 
edited by Cockburn, Karniadakis, and Shu [10]. The DGM possesses a number 
of important properties that set them apart from traditional conforming Galerkin- 
finite element methods: they are elementwise conservative, can support high order 
local approximations that can vary nonuniformly over the mesh, are readily paral- 
lelizable, and, for time-dependent problems, lead to block-diagonal mass matrices, 
even for high-order polynomial approximations. These properties make DGMs 
attractive candidates for a broad collection of applications. 

Several papers have been published in the mathematical literature on a priori error 
estimates for various DGMs for diffusion problems. In particular, an analysis of 
one-dimensional versions of the Baumann-Oden method was reported by Babuska, 
Oden, and Baumann [2]. Error estimates for several types of DGMs and for the 
related Internal Penalty Galerkin Methods were presented in the dissertation of 
Riviere [19] and in the paper of Riviere, Wheeler, and Girault [20]. Several other 
studies on a priori error estimates for DGMs have appeared recently; see, for exam- 
ple, the report of Chen [9] and the analysis of Süli, Schwab, and Houston [22,15]. 
Convergence analysis of other variants of DGM can be found in [10]. 

Here we present a detailed derivation of a priori error estimates for several ftp- 
versions of DG-finite element methods for linear diffusion problems (the Poisson 
problem) on two-dimensional domains. In some cases, important steps in our anal- 
ysis follows the approach of Riviere, Wheeler, and Girault [20], but other steps 
differ in detail. We present a series of approaches in which different versions of 
DGMs, including those with penalty terms, can be analyzed. Our final estimates 
differ in predicted rates of convergence with respect to the polynomial degree p 
obtained in [20,19] and reflect rates consistent with the computed results of Bau- 
mann [7]. 



2. Notations and Preliminaries 

We shall choose the domain Q as a bounded open set in R2, with Lipschitz con- 
tinuous boundary dQ. We will denote FD the part of the boundary dQ on which 
Dirichlet conditions are prescribed and FN the part on which Neumann conditions 
are prescribed. Formally, the boundary dQ is decomposed into the parts To and 
TN such that f D U TN = dQ, and rD D TN = 0. 

2.1. Finite Element Partition 

Let % denote a partition of the domain Q, i.e. % is a finite collection of Ne open 
subdomains (elements) K{, i = 1,2,... , Ne, such that: 

U=  U Tj,       and   KinKj = 0,    i^j. 

The size and shape of an element K„ or simply K, of % are measured in terms of 
two quantities, hg_ and pz, defined as: 

hK = diam(JK), 

/oK = sup {diam(!B); (B is a ball contained in K}. 

We also introduce the parameter h associated with the partition %: 

h = max/iR. (2.1) 

Definition A family {Th} of partitions % is said to be shape regular as h tends to zero if 
there exists a number Q>0, independent ofh and K such that: 

^<Q,       VKefy. (2.2) 
PK 

In this appendix, all partitions % are assumed to be shape-regular. 

In addition, we shall associate with each element K the element boundary dK. The 
unit normal vector outward from K (resp. Kt) is denoted by n (resp. n|,). 

Given a partition %, we shall denote the collection of edges of % (points in one 
dimension, faces in three dimensions) by the set £/, = {7/}, 1 = 1,... , Nr Edges 
represent here open subsets of either Q or dQ. We thus introduce the set Tint of 
interior edges as: 
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so that: 

(j7/ = r,DurNurftIt. 
1=1 

In the same way, we shall decompose £^ into three subsets as: 

Then, 7 € £ft]D if it lies on TD, and 7 G £h]N if it lies on TN. Moreover, as shown 
in Fig. 1, 7,y G E^j denotes an edge (interface) between two adjacent elements K, 
and Kj, where by convention i > j. For each edge 7, we also associate a unit normal 
vector n. In the case 7 is an edge associated with an element K,- adjacent to dQ, i.e. 
7 G £ft)D U £fciN , the unit normal vector is simply defined as n = n|,-. For an interior 
edge 7y G £/,,,-„{, with the convention i > j, n is chosen as the unit normal vector 
outward from Kit so that n = n|, = -n\j (see Fig. 1). In subsequent analyses, C will 
denote generic positive constants, not necessarily the same in different places. 

Remark 1 Using simple geometrical properties, one can show that each edge 7 in a shape- 
regular partition satisfies: 

-hK <pK< |7l < hK, (2-4) 

where \j\ denotes the length ofj. In other words, hK and 7 are equal within a constant. 
Therefore, we will interchangeably use hK or 7 (preferably h^). 

2.2. Spaces 

Let s be a positive integer. For any given open set S (S may define the whole 
domain Q, an element K of %, or an edge 7 of tEh), the spaces HS(S) will denote the 
usual Sobolev spaces with norm || • ||SjS. In the particular case in which S represents 
Q,, the norm will simply be denoted ||-||s. Moreover, Hl(S) is the set of functions in 
H1^) which vanish on the boundary dS of S, i.e. 

Hl(S) = {ve H\S);v = 0 on dS}, 

and H(div, S) denotes the space: 

H(div, S) = {ve (L2(S))2; V • v G L2(S)}. 

The so-called (mesh-dependent) broken space Hs(Ph) will be defined as: 

Hs{%) = {ve L2(Q); v\K G HS(K), VK G %}. 
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Figure 1. Element interface 7,7 and unit nor- 
mal vector n. 

The norm associated with the space Hs(ö?h) is given as: 

MI.A = ( I IMl£* 
\K€<Ph 

1/2 

where ||P||S,K is the Sobolev norm on K. 

We will consider finite element spaces VhV of polynomial functions, possibly dis- 
continuous at the element interfaces, such as: 

VhP = {v€ L2(Q); v\K = v o F"1, v € Pp(K), VK G %} (2.5) 

where F^ is the affine mapping from the master element K to the element K in the 
partition, and Pp(K) is the space of polynomial functions of degree at most p on K. 

In hp methods, the polynomial degree can actually vary from one element to the 
other. Denoting pK the polynomial degree associated with the element K, we define 
the global value p for the partition % as: 

p — imnpK. {2.6) 

One advantage of DGMs over conventional hp finite element methods is that the 
polynomial degrees PK do not necessarily match at the interfaces of the elements. 
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3. Formulations for the Poisson Model Problem 

3.1. Model Problem 

We shall consider here the following Poisson model problem: find the scalar func- 
tion u which is the solution of 

-AM+ cu = /,    inQ, (3-1) 

and which satisfies the boundary conditions: 

u = u0,       on To, .    . 

n • Vw = g,       on rN. 

Here / € L2(ß) represents the load scalar and c is a positive constant over the do- 
main ß. 

We now proceed with the derivation of weak formulations of the Poisson equation 
on discontinuous spaces. Let u, for the moment, be a sufficiently smooth func- 
tion. The regularity of u shall be discussed later in the appendix, namely in Sub- 
section 3.3. Multiplying (3.1) by a function v in H2{Th) and integrating over the 
domain fl, we obtain: 

f (_v • Vw + cu) vdx = / fvdx. 
Ja Jo. 

Unlike the classical continuous finite element approach, we shall first decompose 
the integrals in the above equation into element contributions 

X - f (W-Vu)vdx + X  f cuvdx= X  / fvdx> 
KePh     

JK K£Th
jK Ke(Ph

JK 

and then integrate by parts, so that: 

y   f (Vu-Vv + cuv)dx- y  f   (n-V«)uds= X  f fvdx. (3.3) 

We observe that the boundary integrals are defined on each element boundary; 
those are now splitted according to the type of boundary such as: 

X   !   (n-Vu)vds=   X    /(n-Vw)uds 
KS25,JdK 7e£„,D Ji 

+   X    / (n-Vu)uds 



where vt and Vj denote the restrictions of v on the elements Kt and Kj respectively. 
In the same way, (n • Vu); and (n • Vw);- represents the restrictions of the flux n • V« 
on Kj and Kj. 

In general, except occasionally to avoid confusion, we shall simplify the notation 
of these boundary integrals, by rewriting them, for instance, 

£   f(n-Vu)vds=f  (n-Vw)uds, 

£   /(n-V«)ods= f  (n-Vu)vds. 
-re       Jl JFN 

Moreover, the treatment of the interior boundary integrals is as follows. Given an 
edge jij € <Eh,M snared by two adjacent elements Kt and Kj, i > j, we first note that: 

(n ■ Vu\ Vi + (n • Vu)j Vj = n- (VM); vt - n • (Vu);- v}, 

where n is now the unit normal vector with respect to the edge 7^ as defined in the 
previous section. By analogy with the formula below where a, b, c and d are real 
numbers: 

flC - bd = i(a + b)(c -d) + i(a - b)(c + rf), (3.4) 

we can write the integrand as: 

n • (Vw),- Vi-n- (Vu)j Vj 

= I (n • (V«)f + n • (VM)y) (^ - Vj) + \ (n • (Vu),. - n • (V«).) (v{ + v}) 

= (n • VM) [z>] + [n ■ VM] (V) . 

Here [v] and (z;) respectively denote the jump and average of v on an interior edge 
jp i > j, of any function v G HS(K/) x Hs(Kj), s > 1/2, i.e. 

[V] = Vi - Vj, 

1 
(v) = -(pi + vj). 

We conveniently extend the definition of [v] and (v), following Chen [9], to an edge 
7 lying on Tu as: 

[»] = v, 

(t?) = ü. 



A Priori Error Estimation for DGM 

It allows us to combine the interior and Dirichlet boundary terms in only one inte- 
gral as: 

X    f (n-Vu)ivi + (n-Vu)jVjds+   ]T    / (n-Vu)uds 

= f       (n ■ Vw) [v] + [n ■ Vw] {v) ds. 

Remark 2 Note that when u G H2(Q), the fluxes [n • Vw] are continuous almost every- 
where in £1, which yields 

f [n • Vw] (V) ds = 0,       VveH2(¥h). 
Jri„, 

(3.5) 

Consequently, (3.3) can now be reduced, when u € H2(Q) and applying the Neu- 
mann boundary condition, to: 

y,   ( {Vu-Vv + cuv)dx- f        (n • Vw) [t>] ds = Y   [ fvdx+[ gvds. 
Kei>h

jK JrMurD Ke<Ph
jK Jr" 

We introduce the following bilinear form B(-, ■) defined on H2(Th) x H2((Ph) and the 
linear form L() defined on H2(Th) such as: 

(3.6) B(u,v)= £   I (Vw- Vv + cuv)dx, 

F(v)= X   f fvdx+ f  gvds. (3.7) 

We also consider the bilinear form /(•, •) on H2((Ph) x H2{Th), which incorporates all 
boundary integrals on Tint and TD, as: 

J(u,v)= f        (n-Vu)[v]ds. (3.8) 
JrMurD 

Then, a general discontinuous weak formulation of the Poisson equation reads: 

B(u, v) - J(u, v) = F(v),        Vu £ H2(%). (3.9) 

This above variational form constitutes the starting point to derive formulations of 
various Discontinuous Galerkin Finite Element Methods (concisely, DGMs.) 



3.2. Weak Formulations and Finite Element Discretizations 

All the formulations presented below use the observation that, for u G H*(Q) n 
H2(Th), the jump [u] vanishes on each 7^: 

f v[u)ds = 0,       VveL2(jij). (3.10) 

It follows that: 

f   {n-Vv)[u]ds = 0,       MveH2{Th). (3.11) 

Moreover, the Dirichlet boundary condition can be applied in the following weak 
manner: 

f  (n, Vv) u ds = f  (n • Vv) u0 ds,       Vt? G ü\%). (3.12) 
JTD JTD 

Therefore, introducing the linear form J0(-) defined as: 

J0(V) = f  (n • Vv) uQ ds,        Vv € H2(Th), (3.13) 

we observe that, for u G HX(Q) D H2{%) and u = u0 on rD, 

/(»,«) = /o(^),        VuGH2(fP,). (3.14) 

3.2.1. Global Element Method - GEM 

Introducing the bilinear form #_(-, ■)/ the subscript - referring to the fact that we 
substract the term J(v, u) to the left hand side of (3.9), and the linear form £.(•) 

$-(u,v) = B(u,v)-J(u,v)-J(v,u), 

r-(v) = F(v)-J0(p), 
the Global Element Method consists in finding u such that: 

£_(«, v) = ?-(p),        VP e H\%). (3.16) 

One advantage of this method is that it defines a symmetric problem. On the other 
hand, a significant disadvantage is that the bilinear form is not guaranteed to be 
semi-positive definite. When dealing with time-dependent problems, this could 
imply that some eigenvalues have negative real parts, causing the formulation to 
be unconditionally unstable. 

The corresponding finite element discretization of the above problem consists in 
finding uh e I^P such that: 

$-(uh,v) = T-(v),       Vü G VhK (3.17) 

This method was introduced by Delves et al. [11-14] with the particular objective 
of accelerating convergence of iterative schemes. 
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3.2.2. Symmetric Interior Penalty Galerkin Method - SIPG 

To enforce stability of the discontinuous method, i.e. continuity of the solution at 
the interface of the elements, penalty terms have been added to the formulation by 
Arnold [1] and Wheeler [23]. Let us introduce the following penalty terms: 

}a(u,v)=    X    f <r[u][v]ds+   X    [<ruvds= I        a[u][v]ds, 

and 

7o(ü)=   X       (TU0vds-      <TU0vds, 
7e£„>D-

/7 JTD 

where a represents the penalty parameter which depends on the length of the 
edges 7« and 7 and the polynomial degree used in the elements; namely a = 
a(h, p). Then the SIPG method is similar to the GEM except for the penalty terms. 
Indeed, introducing the forms: 

<BZ(u,v) = B(u,v)-J(u,v)-J(v,u) + r(u,v), 

!F?(v)=F{v)-h(v) + JS(v), 

the Symmetric Interior Penalty Galerkin problem is to find u such that: 

&.(u,v) = y?(v),       VveH2(Th). (3.19) 

Note that when a takes on the value zero, we naturally retrieve the GE method. 

The finite element analogue of problem (3.19) is to find u^ & Vhp such that: 

<B?(uh,v) = f?(v),       Vv e VhP. (3.20) 

Remark 3 Following Baker and Karakashian [5,6,16], we consider a variant of the SIPG 
method. Instead of using the formula (3.4), one may use: 

ac-bd = ac-ad + ad-bd = a(c -d) + (a- b)d (3.21) 

so that, by analogy: 

n • (VH); V{ -n• (Vu)j Vj = n- (V«);[v] + [n • Vw]Vj 

and, since the fluxes, for u G H2(Q.), are continuous across the interelement boundaries, we 
have: 

I (n--Vu)iv) + (n-Vu):Vjds= f n-(Vw);[t;]ds. 
hij hi] 
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The new bilinear form for the boundary terms is now defined as: 

I(u,v)= f        n-(V«),-[o]ds 
JrMurD 

so that the new formulation reads: Find u € H1^) n H2(Th) such that, for all v e H2{%), 

B(u,v) - I(u,v) - I(v,u) + Ja(u,v) = F(v) - J0(v) + J$(v). (3.22) 

We now see that we recover the SIPG method from the Baker-Karakashian formulation by 
replacing the term n • (V«)j by (n • Vw). It follows that all the properties associated with 
the SIPG method will also apply to the Baker-Karakashian formulation. 

3.2.3. Discontinuous hp Galerkin FE Method - DGM 

The discontinuous Galerkin method by Baumann et al. [7,18] differs from the Global 
Element Method by just a sign. Indeed, by introducing the forms: 

$+(u,v) = B(u,v)-J(u,v) + J(v,u), 2 

?+(v) = F{v) + Jo(v), 

the DG formulation reads: Find u such that 

2+(M) v) = !F+(v),        Vü E H2(fPft). (3.24) 

It is straightforward to show that the bilinear form is positive semidefinite. 

The associated finite element version of the DG method consists then in finding 
uh G VhP such that 

Q±(uh,v)=!F+(v),       Vt;e^. (3-25) 

3.2.4. Non-Symmetric Interior Penalty Galerkin Method - NIPG 

This method was introduced by Riviere [19] and Süli, Schwab and Houston [22,15] 
and is inspired from the DG method with the addition of penalty terms. The new 
bilinear and linear forms read: 

2?(M,v) = B(u, v) - J(u,v) + }(v,u) + Ja(u,v), 

9?(v) = F(v) + Jo(v) + JS(v), 

so that the problem to solve by the NIPG method becomes: Find u such that 

2%.(u,v)=!%(v),        Vv£H2(Z>h). (3-27) 

Once again, we may consider DG as a special case of NIPG with a = 0. 
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The finite element problem corresponding to the NIPG formulation (3.27) is to find 
uh € V

hP such that 

$Z(uh,v) = J%{v),       to e VhK (3.28) 

The four methods presented thus far are all very similar, except for a plus or mi- 
nus sign in front of the term J(v, u) and the addition of a penalty term Ja(u, v) or 
not. We shall now see how these changes modify the properties of the respective 
formulations. 

3.3. Equivalence of Strong and Weak Problems 

We shall show the equivalence of the strong and weak formulations only with re- 
spect to the Global Element method. The results are identical for the other formu- 
lations, namely the SIPG, DG and NIPG methods. Existence of solutions of the 
discontinuous formulations is then somewhat guaranteed. However, we empha- 
size here that Theorem 3.1 does not infer anything about the uniqueness of the 
solutions. This question still remains an open issue. 

Theorem 3.1 (GE Method) Let u e C2(Q) be the solution of Problem (3.1)-(3.2). Then 
u satisfies the weak formulation (3.16). Conversely, if u € Ha(ß) n H2{Th) is a solu- 
tion of (3.16) then u satisfies the partial differential equation (3.1) and boundary condi- 
tions (3.2). 

Proof: The first part of the theorem has been proved along with thederivation of 
the Global Element formulation, since (3.9) is satisfied when u G C2(&). 

The converse follows the proof given in Riviere [19]. Let £>(K) C H2(K) be the 
space of infinitely differentiable functions with compact support on element K and 
let v e £>(K). Then (3.16) gives: 

/ (Vw • Vv + cuv)dx = / fvdx 
JK JK 

which implies, after integration by parts and since v is arbitrary in 2>(K), that 

-Aw + cu = f,        a.e. in K. (3.29) 

Next, we consider an interior edge 7,y shared by the elements K{ and Kj. Let v be 
a function in H2(Kt U Kj) C H2(K{) x H

2(Kj), extended by zero outside. Then the 
boundary terms J(u,v) and J(v, u) vanish, because [M] = [v] = 0 on jp and the weak 
formulation (3.16) reduces to 

/      (Vu-Vv + cuv)dx= f      fvdx (3.30) 
JKjUKj JKjUKj 
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On the other hand, multiplying (3.29) by v, integrating on K{ and Kj and using 
Green's formula, we have: 

f (Vu-Vv + cuv)dx- f (n-Vu)iVds= / fvdx, 
JKj hij jKt 

f (Vu-Vv + cuv)dx- [ (n-Vu)jVds- / fvdx, 
JKj Jlij JKj 

so that 

/      (Vu-Vv + cuv)dx- f [n-Vu]vds = f      fvdx. (3.31) 

Comparing (3.30) and (3.31), one observes that: 

/ [n-Vw]z;ds = 0,       Vu e H2(Ki U Kj). 

Then, [n • Vu] = 0 for all element edges 7,7, which implies Vw G H(div, Q). This 
allows us to conclude that u satisfies Poisson Equation globally on Q, i.e. 

-AM + cu=f,        a.e. inQ. (3.32) 

To recover the Dirichlet boundary conditions, we now consider a function v G 
H(J(Q) n H2(Q), so that integrating (3.32) provides: 

/ (VM- Vv + cuv)dx- / fvdx, 
Jo. J& 

whereas (3.16) yields: 

f (Vu-Vv + cuv)dx- I   {n-Vv)uds = I fvdx- /   {n-Vv)uQds. 
Jo. JTD JO. JTD 

Substracting both equations, we obtain: 

f  (n-Vv)(u-u0)ds = 0,        VüeH0
1(Q)nH2(Q)! 

JrD 

and conclude that u = UQ on TD. 

In the same way, choosing v G H2(Q) C H2{%) such that o = 0on TD, we get: 

/   (n- Vu-g)vds = 0, 
JrN 

so that n • Vu = g on TN. n 

Remark 4 When c is zero, C2(U) can be replaced in Theorem 3.1 by HX{Q,) D H2{Th) since 
Vu e H(div,Q). 
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3.4. Properties of the Bilinear Forms 

3.4.1. Mesh-dependent norms 

We now introduce norms associated with the bilinear forms: 

1. Energy Norm: 

\MU = B(v,v)= X \\v\\lK= X (l|V*||gilc + c|M||U) (3.33) 

2. Norm proposed by Süli et al. in [22,15]: 

|M|i = B(v, v) + r(v, v) = \\v\\lTh + f        a [v]2 ds (3.34) 

3. Norm proposed by Baumann et aim [7,17,18] and by Baker and Karakashian 
in [6]: 

Hi = IMIa + f      ~ (n ■Vy)2 ds (3-35) 

We note that the energy norm becomes a seminorm when c is zero. 

3.4.2. Continuity of the bilinear forms 

We shall show now that the bilinear forms ®t(-, •) and ®J(-, •) are continuous on 
H2(%) with respect to the norm |||-|||,p defined in (3.35). Unfortunately, we are 
unable to show continuity with respect to the other two norms (3.33) and (3.34). 

Theorem 3.2 (GEM and DGM) Let !&t(-, •) be the bilinear form defined either in (3.15) 
or in (3.23) . Then, 

\<B±(u,v)\ < IHI^ IHI^ ,       Vu,Vv e H2(fPft). (3.36) 

Proof: 

First note that: 

|^(u,t;)| = \B(u,v)-J(u,v)±J(v,u)\ 

<\B(u,v)\ + \J(u,v)\ + \J(v,u)\ 

It is clear that 

\B(u,v)\<  X   / \Vu-Vv + cuv\dx< ||« 11^,IMIe.25, 
Ke2l JK 



14 

The first boundary term gives: 

\J(u,v)\< [        |(n-Vw)[z;]|ds 

<.fj        (T-1 (n-V«)2ds./7        a [v]2ds. 
~ V JrMurD V Jr^ro 

Likewise, 

\J(v,u)\< [        |(n-Vü)[w]|ds 

< J]       a[ufdsjf       a-1 {n-Vv)2ds. 
V ^rwurD V JrMurD 

In consequence, we have, using the discrete Schwarz inequality (A.l): 

|«t(«,f)l<ll«IUjalMleA 

+ A/7        o-1 <n-V«)2dsA/7Tftlfds 
V yr«urD V ^r«urD 

+ ./T        a [ufds.ff        a-1 {n-Vv)2ds. 
V ./r-„(urD V -/r-nturD 

X V/Hl^ + lur/[Bl2dS + Lr/"I<n'Vt'>2dS 

< 111«!^ INIk» 
which completes the proof. □ 

Theorem 3.3 (SIPG and NIPG Methods) Let ®£(-, •) be the bilinear form defined ei- 
ther in (3.18) or in (3.26). Then, 

m(u,v)\ ^ClIluI^IH^,        Vu,toeH2(2fc). (3.37) 

where C is a constant, C < 2. 

Proof: 

As before we have: 

\<B£(u,v)\ = \B(u,v)-J(u,v)±J(v,u) +Fiurfl 

< \B(u,v)\ + \}(u,v)\ + \J(v,u)\ + \}a(u,v)\ 

<\\\u\\u\\v\\w + \nu,v)\. 
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And 

\r(u,v)\ < f        \<r[u][v}\ds < .ft        <T[u]2ds<ft        a[v]2ds. 

Therefore, making use again of the discrete Schwarz inequality (A.l), we obtain: 

m(u,v)\ < IH4 \\\v\y + JJ        a[ufdsff        a[v)2ds. 

< yf2\\\u\\\y2\\\v\\\lh 

<2|||w|||2>JM|-pA, 

and we see that C is at most equal to 2. D 

3.4.3. Coercivity of the bilinear forms in the discrete spaces 

Here we wish to show that the bilinear forms (B±(-, •) and ®t(-, •) are coercive in 
H2(%) with respect to the norm ||j • \\\p in order to be able to apply classical theorems 
for existence and uniqueness of solutions of the discontinuous methods. Unfortu- 
nately, to date, we are able to prove coercivity only in the discrete discontinuous 
spaces lShP, and then, only for the SIPG and NIPG formulations . 

Theorem 3.4 (NIPG Method) Let a = up2/h, K being a positive number. Then, for all 
K > 0, there exists a positive constant, a>0, such that: 

2?(z, 2) > a \l\z\W\ ,       Vz € VhK (3.38) 

Here a is independent ofh and p. 

Proof: Let a be an arbitrary real number and choose azE Vhv. Then 

^(z^-allzlll2^ 

= (l-a)B(z,z) + (l-a)r(z,z)-a /        -(n-Vz)2ds 
Jrinlurn cr 

Since (n • Vz) is the average of the flux at the interface of two elements K{ and 
Kj, the corresponding integral can be split into two integrals with integrands (n • 
Vz)j/o~ and (n ■ Vz)y/<r, each one associated with the elements Kj or Kj respectively. 
Therefore, let 7 C Tint U Tp and consider the integral associated with the element 
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K. Using the trace inequality (A.3) and the inverse property (A.7), we have 

/i(n-VZ)2dS< Vz|£7 

-§(^I|V*K+I|VZ|IO'KI|V2Z|K 

so that, selecting <r to be equal to Kp\/hK, we obtain: 

-/Vvz)2dS>~||VZfc. 
./re K 

Note that, when the mesh size hKi and hKj and the polynomial degrees pKi and pKj 
are different from each other in the two elements K{ and Kj sharing the edge 7,7, we 
actually choose a as 

max("2   "2 

a — K- mm(hK.,hK.)' 

so that: 

^I(n-V2)2dS<g||Vz||§,, 

Cmin(hKi,hKj)p
2K 2 

< §l|Vz||giKi. 

It then follows that: 

2?*(z, z) - « lllzlH2^ > (1 - a - aC/«) B(z, z) + (1 - a) T(z, z). 

Therefore, we certainly can pick a value of a such that 

1 
0<a< 1,n/ 1 +C/K 

for which the bilinear form $£(•, •) is coercive in VhP, for all K > 0. D 
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Theorem 3.5 (SIPG Method) Let a = K,p2/h, K being a positive number.   Then, for 
K > «0/ inere exists a positive constant a independent ofh and p,a>0, such that: 

<BZ(z,z)>a\\\z\\\lh,       VzeVhP. (3.39) 

Proof: Let a be an arbitrary real number and choose z e Vhp. Then 

2£(z, z) - a \\\z\\\lh = (1 - a) B(z, z) + (1 - a) f{z, z) 

-if        (n-Vz)[z]ds-a /        -(n-Vz) 
JrinlurD JrM\jrD a 

2ds 

There exists a positive number e such that for every edge 7 e rj„f U TD: 

2/" (n • Vz) [z]ds < 2 Jf a-1 (n • Vz)2dsJJ a[z]2ds 

<e /-(n-Vz)2ds + -/a[z]2ds 
J-y 0~ € J>y 

which yields, using the result in the previous proof: 

3Ü(z, z) - a \\\z\\\lh >(l-a-(a + e)^J B(z, z) + (l - a - i J Hz, z). 

In order to prove coercivity, we want to find a > 0 such that both factors in the 
inequality are positive, in other words: 

l-a-(o! + e)-) >0       and        (l-a--J>0. 

The second inequality requires that: 

0<a<l-- 
e 

which means that 

e>l. 

On the other hand the first inequality requires that: 

1 — EC/K     1 — C/K     K — C 
0<Oi- I + C/K -1 + C/K- ~^+C 

This completes the proof by taking K sufficiently large, namely K> n0 (where for 
instance KQ > C.) □ 
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Remark 5 We note that $$(■, •) (for NIPG Method) is coercive in H2{%) with respect to 
the norm \\-\\^. Indeed, for all v £ Hz(Ph), 

%(v, v) = B(v, v) - 7(o, 17) + J(v, v) + J*(v, v) = \\v\\\. (3.40) 

It is also straightforward to show that <B+ (•, •) (for DGM) is coercive in H\%) with respect 
to the energy norm \\-\\e,%: 

<B+(v, v) = B(v, v) - J(v, v) + }(v, v) = B(v, v) = ||ü||^. (3.41) 

These results will be crucial in deriving a priori error estimates in the next section. 

4. A Priori Error Estimates 

4.1. SIPG and NIPG Methods 

Theorem 4.1 Let u e Hx(ß) D Hs(Th), s > 2, be a solution of (3.18) (SIPG) or (3.26) 
(NIPG) and u% be the discrete discontinuous solution of 

<B£(uh,v)=?F(v),       VveVhr. (4.1) 

Then, choosing a - Kp2/h, (n>0for NIPG and K > n0for SIPG), the numerical error 
e = u — Uh satisfies: 

hi*-1 

NU<c^375ll"lls (4-2) 

where p, = min(p 4-1, s) and p>\. 

4.1.1. Proof of Theorem 4.1 for SIPG and NIPG 

First, by definition of the norms, we note that \\e\\et$>h < |||e|||^. In other words, it 
suffices here to estimate the error with respect to the norm |||-|||.pft. The proof is 
inspired by [5,6,16] where the authors have derived the rate of convergence in h 
only for the SIPG method of the (3.22) form. Here we extend their results to the 
NIPG formulation as well and also show for both methods the rate of convergence 
in p. 

Proof: Let zp be an interpolant of u in V*1?. We shall use the notation 77 = u - zp 

and £ = uh - zv so that e = u-uh = r)-£. Applying the triangle inequality, we 
have: 

llkllk - III" - «».Ilk = Hto - *llk ^ UMIk + IKIlk • 
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From the coercivity of the bilinear form #|(-, ■)/ since £ G VhV, we have 

and from the "orthogonality" property <B§.(u - uh, v) = 0, Vv G I^P, we get 

Using the continuity of #±(-, •)/ we know that 

which implies 

\U\h<cMk- 
Finally, we have 

\\\e\hh<\\\r)\hh + \\mk<C\\\T}\\\Vh. 

We recall here that C is a generic constant independent of h and p which takes 
different values at different places. 

We now choose the interpolant zp as defined in Lemma A.7. Then: 

= E   f (\VV\2 + cV
2)dx+f        -(n-Vr))2ds+ f        a[r]]2ds 

VTVJKV / JrinturD <x JrinturD 
=     ;.     I     IIVT/I    TH/    |U*TI 

urD <r JrinlurD 

(4.3) 
*     Ke*h 

The integrals in the leading term are estimated as, using (A.8): 

f^dxKC^pi   \\u\\lK,        5>1, 

j^r?&x<cc(^   \\u\\lK,        s>0, 

so that 

/ (iVr^Wjd^C-LH2^        s>l. 

Let 7,y denote an interior edge shared by the elements Kj and Kj. Then, using the 
inequality (a + b)2 < 2a2 + 2b2, we observe that 

f -{n-Vr,)2ds<lf -(n-iV^fds + lf ± (n • (Vr^Vds. 
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In other words, in splitting the second integrals on the right hand side of (4.3) as 
above, we actually associate with each 7 G T,hM U £Ä>D an element K, such that 

<-f^l|Vi?||gflc+||Vi?||o1ic||V2i7||o>ic a \nK 

<^fy\v\\lK + \\vkM\vh,K/ 

C(\ hf~2    hK~l hK~2\ .. ||2 
< -  r~fe=2 +-1=1-1=2) M fe 

c fhf-3   hf-3\ .. Il2 

"KPK
2

     PK    J 
,-3 

< -%=iW<K 

Ck£-2 

K
PK 

<7*rll«fc,      s>2. 

Again, for an interior edge 7^ shared by K{ and Kjf using (a - bf < 2a2 + 2b2, we 
have: 

f a [V]2ds = f a {m - Vj)2ds < 2 [ a (Vi)
2ds + 2 f a (Vj)

2 ds 
Jlij hi) JHi J"/V 

This means that the edge integrals making the third term of (4.3) are bounded by: 

r h2^1 h2ß~2 

/ a(n)2ds < OT^WUWIK < C«-^3 ||M||S
2,K Ji PK PK 

In combining the above results, we thus obtain 

( tfp-2       h2iL-2       flt-2 } V2 

\\\e\h<CMk<CZh[^ + ^ + ^]     NU 

K€(Ph PK 

<C^372» 

which is the expected a priori error estimate. □ 
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4.1.2. Alternative Proof of Theorem 4.1 for NIPG 

Alternatively, we present a second proof of Theorem 4.1 for the NIPG method only 
as it is based on the nonsymmetry of the formulation. The proof is inspired by 
the one found in [22]. However, our rate of convergence with respect to p was 
improved from (s — 2) to (s - 3/2) using the interpolation estimates of Lemma A.7. 
Later, the same authors proposed in [15] a comparable version of the proof with 
(s - 3/2) as the rate of convergence. 

Proof: Once again, zp is the interpolant of u in <VhV as defined in Lemma A.7. and 
we denote r) = u — zp and £ = u^ — zp as before. Then, 

IMU < IMk = II" - «alls = Ito - £lk < IMk + IKIk- 
Moreover, from the definition of !#£(•, •) and the norm |H|e,25, (see (3.40)) and the 
"orthogonality" relation, we have: 

The goal is now to bound (B^(r], 0 in terms of H^H^. Recall that: 

n(v, 0 = Bfo, 0 + F(ri, 0 - J(V, 0 + M, V) 

< \B(V,01 + irfo,01 + 1/07,01 + \M,rj)\ 

The first term on the right hand side of the equation above gives: 

|Bfo,0l<  I  /"|V»7-V^ + c^|dx<||»y||e^||a^<IMklKlk- 
K625, yK 

The term \Ja(r), 01 is bounded by: 

\}a(v,0\< [      kMKllds 
•'ri„,urD 

A/7        <T[7?]2dSj7       ^[o2ds 
V vr^„,urD V ^n«»urD 

< 

<Nkll£lk, 
whereas we have for the third term: 

\J(r),0\< f        |<n-Vij>[fl|ds 
'!«(UrD 

< 
V -/r}„,urD V JrMurD 

< »a*^ (T-^n-V^ds. 
i/HturD 
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Likewise, /(£, rj) is bounded by: 

V «Ti-BturD 

Using again the trace inequality (A.3) and the inverse property (A.7), it is shown 
that: 

„2 
/Vvtfds<^||V*||SlK 
Jf(T (T nK 

In other words, using a = Kp\/hK 

\mri)\<C\\r)\\%Mhh 

Combining the above results, we have: 

lltlk < C (|Mk + ]JfrintUrD^
{n-Vv)2dS) ~ C M* 

so that: 

IklU < IMk < Nk + IKIk < Nk + ciNlk < ciNIk ■ 
We conclude the proof by employing the estimate on \\\rj\\\rph shown in the previous 

proof. ^ 

4.2. DG Method 

We recall that the DG formulation proposed in [7,18] is deduced from the NIPG 
method by simply setting the penalty parameter o to zero. However, unlike NIPG, 
continuity and coercivity of the bilinear form #+(-, •) cannot be proved simultane- 
ously using the same norm. At best it is shown that: 

B(v,v) = \\v\\l!Ph,       VveH2(Fh), 

and that: 

<B+(u,v)<l\u\UhP\ivh,       V«,^^). 

The main issue in finding a priori error estimates for the error e = u - «/, in the nu- 
merical approximation uh of the DG problem consists in deriving an upper bound 
on: 

tt rinturD 
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with respect to the norm H^He,^ whenc = 0. This integral does indeed appear when 
bounding the term J(T?, £), i.e. 

17(17,01 < f        \{n-Vr,)lZ\\ds<J[        (n-VtfdsJf        [tfds. 
JrinlurD V JrMurD V JrMvrD 

We present below two approaches, by treating separately the case when c is zero 
and the case when c is nonzero. 

4.2.1. A priori error estimate when c is nonzero 

We find it instructive to analyze the special case in which c is strictly greater than 
zero. In this case, we still can use the methodology presented earlier for the NIPG 
method. However, we shall see that the rate of convergence with respect to the 
mesh size becomes suboptimal as stated in the following theorem. 

Theorem 4.2 Let u G Ha(fl) D Hs(Th), s>2,bea solution of (5.23) with c > 0 and uh be 
the discrete discontinuous solution of (3.24). Then, the numerical error e = u — U}t satisfies: 

MU<C^2\\u\\s (4-4) 

where n = min(p +1, s) and p > 1. 

Proof: Using the same procedure and notation as before, we have: 

\\4e,(Ph = II" - «ftlUift = \\V ~ £\\e,Th < h\\e,Vh + UWeft- 

Moreover, from the definition of #+ (•, •) (see (3.41)) and the "orthogonality" rela- 
tion, we further show that: 

MWU = $+& 0 

= «ffo,0. 

= Bfa,0-/fa,0 + 7(£,»7) 
<\B(v,0\ + \J(V,0\ + \mr))\ 

We now consider each term one at a time. The first term B(TJ, £) is straightforwardly 
bounded by: 

\B(n,0\ < IMUIKIU < c^lMWKIU (4.5) 
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We expect that the third term J(£, rj) can be treated as before and should not pose 
any problems. Indeed, applying the Cauchy-Schwartz inequality we have: 

When 7 C Tint U TD and £ E l/hP(K), we have already shown that: 

f(n.V02ds<C&\mlK. 

Next, we obtain from the approximation property (A.9) 

/^2ds = «,7<C-|rr||M||^- 
Ji PK 

Therefore the term J(£, rj) is bounded by: 

\M^)\<C^ßM\s\UeA- 

Finally we need to consider the term 7(77, Q, which is held responsible for deterio- 
rating the convergence rate of the solution. By the Cauchy-Schwarz inequality, we 
have: 

Once again, the approximation property gives 

r h2ß~3 

(n-Vr,)2ds<C-^\\u\\lK 
Ji PK 

while from the trace inequality (A.3), we have: 

IÄ7<c(^||eil8,ic + lieilo,icl|V^||o1ic 

<c(±\\t\\iK + hK\\Vt\%K} (4-6) 

< &MIK- ch K 
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It is important to point out here that the norm ||£||0i7 is bounded as long as c > 0. 
Then we have: 

l/to>OI<c^^N|s||£IU- 

In conclusion, 

ll«lk* i C (^ + -^ + ^) ||«||. < C^MI» 

which completes the proof. □ 

Remark 6 Note that C is inversely proportional to c. Therefore the error is expected to 
grow as c gets smaller. 

4.2.2. Discussion of the case in which c is zero 

The operator, when c is zero, reduces to the pure Laplacian. In this case, the energy 
norm \\-\\e,% becomes the seminorm ||V-||o,25,. Following the same procedure as 
before, we would have: 

l|V£||^ = #+(£, O = ®+07,6 (4-7) 

where 77 = u — zp/ £ = u^ — zp and zp defines an arbitrary interpolant of u on 1/hP. 
However, from (4.6), we can see right now that the term 2?+(r/,£) would then be 
bounded by ||£||o,2>,,- In turn, it is impossible to bound ||^||o,25, with respect to 
||V£||o,!PÄ. Therefore, the previous methodology to obtain error estimates cannot 
be applied in the present case. 

Suppose that we introduce an elementwise constant function £ to be defined later. 
Then, we can rewrite (4.7) as: 

|| VelloV, = ^to' 0 = ^> £-? + £) = ®»-fo> £ - Ö + 2+0/' 0- (4-8) 

Suppose now we can construct a new interpolant such that: 

2MTJ,£) = 0. (4.9) 

Then we would have 

l|V£feft = #+(^0 = #+(^-u 
= Bfa, £ - 0 ~ KV, t-O + M-lri) (4-10) 

= B(ri,0-J(ri,Z-0 + K$,r,) 



26 

We have seen that the terms B(r},® and J(£,r)) are easüy bounded in terms of 
|| V£||o,2j,. The other term reads: 

KV,Z-1)= [        <n-V7?>[e-?]ds. 
JrMurD 

According to Lemma A.5, this integral can be bounded with respect to ||V£||0,2j 
under the condition that £ is chosen as the average of f on each element. 

This approach has been followed in principle by Riviere, Wheeler and Girault 
in [20,19] where they construct special interpolants nu which satisfied (4.9) and 

hß 

\\u - TTU\\0,K < C-^\\u\\s>K, 

hß~l 

||V(w-7ru)||o,K<C-^2 NU, 
PK 

||V2(M-7rM)||o^<C^2||M||s,K, 
PK 

where p = min(pK + 1, s), s > 2, pK > 2. Using these interpolants, they were able 
to derive an a priori error estimate of the form: 

lively <C^jN|s. (4-11) 

Although the rate of convergence is optimal in h, we show next that the rate of 
convergence in p is in reality better than (s - 4). We improve this result by con- 
structing better approximation properties for the new interpolant and by refining 
the analysis. 

4.2.3. New Interpolants 

Lemma 4.1 Let Kbea triangular element of the partition % and u a function in HS(K), 
s>2. There exists a positive constant C depending on s and Q but independent ofu, pK, 
and hKr and a polynomial iru e PPK(K), pK > 2, such that 

f n ■ V(M - iru) ds = 0,        V7 C dK, (4.12) 

and 
hß 

\\u - 7rw||o,K < C     3/2ll«lkK» 
PK 

hß~x 

||V(« - 7r«)||o,ic < C-^572 IMU, (4-13) 
PK 

hß~2 

||V2(M-7rM)||o,K<C-^2l|w|U, 
PK 
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Figure 2. Reference element K and mapping FK from K to the ele- 
ment K in the physical domain. 

where /J. — min(pK +1, s). 

We present the proof of this theorem for triangular elements only. The proof is 
similar for quadrilaterals. 

Proof: Let the triangle K € Q be the image of the master element K by the affine 
mapping FK as shown in Figure 2. The mapping FR is often rewritten as: 

FK(x) = Bx + b (4.14) 

where B represents a two-by-two matrix whose components are independent of x 
and b is a two-dimensional vector. Here, 7 will refer to the edge between node 
N2 and N3, unless stated otherwise, and 7 on K will denote its image by F^1. We 
associate with 7 and 7 the unit normal vector n and n, respectively. 

Given 77 6 H2(K), namely rj = u — zp, where zp is the interpolant of u as defined 
in Lemma A.7, the objective here is to construct a polynomial function q in ^^(K) 
such that: 

/ n • Vr/ ds =     n-Vq ds. 
Jf J-y 

d we would have: 

/ n • V(?7 - q) ds = / n ■ V(w -zp—q)ds= / n • V(M - (zp + q)) ds = 0, 

(4.15) 

and the new interpolant could be derived as nu = zp + q. 

Following [19], and assuming pK > 2, we introduce the polynomial function q-y 
associated with the edge 7 on K: 

fa = C7(l - x - m + y)>        V x = (x, y) € K. (4.16) 
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~ A 

Figure 3. Polynomial function ^7 on the reference element K. 

where C7 is a constant to be defined. We observe in Fig. 3 that such a polynomial 
function satisfies: 

/   n • V<?7 ds = 0 
•/712 

f      n-Vq 

f  ri-Vcj. 

i7 ds = — 2C7 

ds = 0 

with 7,-y defining an edge on K joining the nodes N,- and Ny. 

The constant C7 is found so that (4.15) is satisfied in the physical space. Further- 
more, we obtain an upper bound for C7 (see Riviere [19]) as: 

|C7|<C||B||2||B-Tl|V*)llo,7 

<Ahi PK 
'*¥ IIVi?||o,n 

<C<r2(jJ  h){2\\Vr,\\o,y 

<C/zf HVrjIlo,, 
r 1 1/2 

<c{||Vi?||g,K + ftK||V»7||o,jc||V2i7||olK} 

where we make use of the Trace Inequality (A.3). We also observe that: 

H^llo.K^CldetBl1/2!^!^ 

<cfcK|c7||£| 

<ChK\C7\. 
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Likewise, we have: 

||V<77||o,K<C|C7| 

IIV^IIo.K^CÄ^lCyl 

So far, we have carried out the analysis for the edge 7 between node N2 and N3. 
We point out that the same results are obtained for the other two edges. We then 
associate with each edge 712, 723/ 731/ a polynomial qi2, q23, #31 respectively such 
that 

^i2 = Ci2y(i-y) 

q23 = C23(l-x-y)(x + V) 

hi = c3i *(! - *) 

Adding these polynomial functions together, we construct on the element K a new 
function q G P2(K) 

<f(x) = <?12(x) + <723(x) + 931W. Vx e K> 

which satisfies 

/   n-Vqds =       n ■ V(qt2 + qn + </3i) ds = /   n-Vqnds-       n-Vr/ds, 
Jill •'712 ^712 «'.712 

/   n-Vqds-       n ■ V(qn + qz$ + 931) ds = /   n-Vq23ds =       n-Vrjds, 
J^23 •'723 •'723 ^723 

/   n-Vqds=       n • V(^i2 + 923 + <?3i) ds = /   n-Vq3ids=       n-Vr?ds. 
^7^1 >/7si •'731 •'731 '731 •'731 •'731 •'731 

In other words, there exists a function TTU G Pp(K), ixu — Zp + q such that 

fn-V(u-7Tu)ds = 0,       VjCdK. 
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Now, by the triangle inequality, 

II" - Hlo,K < II" - zpllo,K + llfllo.K 

< Ikllo^+felkK + ll^sllo.K+lksillo.K 

|O,JC + ChK{\\VV\\lK + äJCII VI7||0,K|| V^HO,«}
1
 * 

hi   1   fhf-2   , h^h^1^ 
PK PK   PK 

< 

PK 
>  "kit 

<Cl-Z-+hr   K 

K-Cp^ 

[K        PK 
s-3/2 l"lls,K 

"lls,K. 

In the same manner, we find: 

IIV(« - 1TU)\\o,K < ||V(« - zp)\\0tK + \\Vq\\0,K 

< II Vt|||o.jc + C {|| Vri\\lK + hK\\ VTI\\O,K\\ V2rj\\0,K 
\1/2 

<C< 
h!i 

-1 
K |_   "K /# -1 

^r1' Pr
3/2. " U,K 

<c w -1 

,s-3/2 l"lls,K, 

and 

| V2(W - 7TH)||0)K < || V2(w - Zp)||o,JC + ||V2q\\0,K 

< \\V2r)\\0,K + Chi1 {IIVirtlJU + *KIIV»/IIO.JCIIV2»7llo,*} 
1/2 

<c<K + /* 
PIT2 ^}w \s,K 

<c hf 
ns-2 l"lls,K- 

We observe that the first two estimates are governed by the rate of convergence of 
\\q\\o K and || V^||O,K respectively, while the last estimate is governed by the rate of 
convergence of 11V2 7711 o, K • d 
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4.2.4. A priori error estimate when c is zero 

Theorem 4.3 Let u G Hl(Q.) D Hs(Th), s>2 be a solution of (3.23) and uh be the discrete 
discontinuous solution of (3.24) with c = 0 and p > 2. Then, the numerical error e = 
u — Uf, satisfies: 

l|V4>.*<C^H, (4-17) 

where ß = min(p + 1, s). 

Proof: Let iru be the interpolant of u in 1/hP, defined on each element K of Th as 
in Lemma 4.1. We also introduce rj = u - iru and £ = uh - nu. Using the triangle 
inequality, we have: 

lively = ||Vfo - Ohm, < IIVTjIIca* + IIV£||o|2l 

and from (4.7) and (4.8), we recall that: 

II vain = s+^> 0 = ®+(v, €-0 + ®f to, 0- 

Here £ is chosen as the average of £ over each K, i.e. 

\K\ JK 

We note here that the authors in [20,19] chose £ as the average of £ over each edge 
and their proof is thus slightly different from ours. 

This particular choice of the interpolant iru and piecewise constant function £ does 
indeed yield: 

<B+(rj, 0 = B(r,, £) - J(V, |) + J(l V) = -/fo, Ö 

= -/ (n-V^^ds 
JrMurD 

= -[£]/        {n-VV)ds 

0 

since the last integral is zero according to the property (4.12) of the interpolant iru. 
Therefore 

We now show how <B+{q, f — £) can be bounded with respect to || V£||o,2>,,. We nat- 
urally have from (4.10) 

\^,Z-l)\<\B{r,,0\MKri,Z-l)\ + \MM 
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The first term gives, using the approximation properties of Lemma 4.1 and the 
discrete Schwarz inequality: 

|Bfa,fll< I  [\VvVZ\dx< X I|V»7||O,KI|V£||O,K 
KtTh 

JK Ke¥h 

^ I c-^\\u\\BtKm\\o,K 

<c^j-2\\u\\sm\\oM 

The third term is treated as usual. We have 

\mi)\<f        |<n ■ VOMld« < 2IK« ■ VOIk-yllWllo.7 
•/rötfurD 7 

<CX      I     l|n-Ve||o,7l^llo,7 
K£<p„i€dK\rN 

<CI     I    l|V£||o,7Nlo,7 
K625,7€9K\rN 

From the trace inequality (A.3) and the inverse property (A.7), we show that: 

1/2 

||V£||o,7 < C {^llV^fc + llV^llo.jcllV^Ho.x} 

< C {^IIV^I^ + ||VflkjcQj£||Ve||o,jc} 

<C^-||V£||0,K 

and, from the approximation properties of Lemma 4.1: 

IMIo,7 < C{j-Nlo,K + IMMIVryllo,^] 

-1 1 V2 
K    ll«l|2      ,   _"K "K |i„i|2. <-c{±§-M^§r^»i* 

\2rx  h2rl 1/2 

^"1/2 

<C-^||u|U 



A Priori Error Estimation for DGM 33 

In conclusion, we find that: 

« h 
\KM\<cj:^m\\otK

ji^\\u\\sjc PK ■—-     "■■" 

Keäfc h][2 p"K 

^Cl "feH^IMMU 
-1 

<c-^\\u\\,\mo*. 

In the same manner as before, we obtain for the term /(ry, £ — £): 

l/fo,e-*)l<cx   I  iiv^iiol7iK-?iio,7 
Ke%iedK\rN 

In this case, we have using also the approximation properties of the interpolant: 

1/2 

l|V^||„,7<c|i||V,ßiK + ||V,||„ii;||V
2,||„,K} 

ft/*-3/2 

However, for the other term, we have, using Lemma A.5: 

1/2 

IK - eilo,7 < C {^||e - £|feK + ||£ - ?||O,K||V« - Dllo,*} 

<c{^iK-^,K+iK-eiio,div^iio,K| 

<c{^|||V£||^ + /zK||Ve||0lJc||VCllo,K} 

< C/zf ||V£||o,K 

11/2 

1/2 
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It follows that: 

l7fo,*-öl<C I -fcTjll-lkicÄfllV^lo.jc 

<CI -^dNkidlVfllo.jc 

<C^II«IU|V€||oA 

Combining the previous results, we finally get: 

ll^llw £ c (^ + ^571 + ^h/l) Nl. < C^ll* 

and this completes the proof since ||V?7||o,25, converges with a greater rate of con- 
vergence than 11 V£ 110,25, • d 

4.2.5. Alternative estimate when c is nonzero 

We now use the previous results to review the error estimate when c is nonzero. 
The new estimate is given in the following theorem: 

Theorem 4.4 Let u G H1(Q) n Hs(¥h), s>2,bea solution of (3.23) with c> 0 and uh be 
the discrete discontinuous solution of (3.24). Then, the numerical error e—u-u^ satisfies: 

IMU<C^ST2IHI* <4-i9> 

where /J, = min(p +1, s) and p>2. 

Proof: In this case, we have: 

IKIlU = *•■<* *> 
= Bfa,0-Jfo, £) + /(£,»?) 

= B(v,o-J(v^-0-J(ri,b + M,n) 

= B(rj,0-J(r]^-0 + M,V) 
<\B(r],Q\ + \J(v,Z-0\ + \M,r))\ 

if the interpolant is chosen as in Lemma 4.1. 
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Moreover, results from the previous theorem provide us with: 

r W~l 

|Bfa,0l< I  / |Vi/-V^ + c^|d*<C-=^||tt||.||a,ai, 
KePh

JK V 

Uß-l Uß-l 

\M,r})\ < C-l^||ii||5||Ve||oA < C-^MSUIM, 

I7<*7.0I < c^j||«||5||ve||oA < c^-JuWsUWe,^ 

so that 

and this completes the proof. □ 

This time, the rate of convergence is optimal with respect to h but the rate of con- 
vergence in p is worse than in the previous estimate. This makes us believe that the 
error estimates for the DG method can still be improved with respect to p. Maybe 
better interpolants are yet to be found. 

5. Concluding Remarks 

5.1. Remarks on the Discontinuous Formulations 

We have studied here four different formulations of the so-called Discontinuous 
Galerkin Method (DGM). These formulations simply vary by one sign (plus or mi- 
nus) and by the addition of a penalty term (or not). However, they greatly differ in 
nature from a mathematical point of view. We now review each formulation one 
by one and recount our findings in the case of linear diffusion problems. 

Global Element Method. Little can be proved for this method. We were able to 
derive the continuity of the associated bilinear form, but failed to even obtain a 
priori error estimates. This is because the bilinear form is not guaranteed to be 
semi-positive definite. 

Symmetric Interior Penalty Galerkin Method. The SIPG Method is similar to the 
GEM except for the addition of the penalty term. However, it allows us to prove 
non only continuity of the bilinear form, but also coercivity in the discrete discon- 
tinuous space (for sufficiently large values of the penalty parameter), and thus a 
priori error estimates optimal with respect to h (/JL — 1) and slighty suboptimal with 
respect to p (s — 3/2). One major drawback of this method is that its behavior de- 
pends on the selection of the penalty parameter. If not chosen carefully, the method 
can fail. 
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Non-Symmetric Interior Penalty Galerkin Method. The limitation of the SIPG 
method is remedied by changing one minus sign by a plus sign. Indeed, although 
the NIPG formulation results in a non-symmetric system of equations, all the prop- 
erties and error estimates are shown to be independent of the choice of the penalty 
parameter. We also find the same rates of convergence with respect to h and p as 
SIPG. 

Discontinuous Galerkin Method. DGM is deduced from the NIPG method by 
setting the penalty parameter to zero. We then observe that the rate of convergence 
with respect to h or p deteriorates. Also, in the case of the pure Laplacian operator, 
when c is set to zero in the Poisson problem, we obtain a priori error estimates only 
by defining some new interpolants whose fluxes are weakly equal to the fluxes of 
the exact solution over each edge of the elements. Although the rate of convergence 
in h remains optimal, the one in p is then estimated to be s — 5/2. We believe that 
it might be possible to improve this rate of convergence by considering other types 
of interpolants. At this point, detailed numerical experiments would be helpful to 
understand how the penalty term affects the quality of the approximations. 

5.2. Future Challenges 

The great challenges for DGMs are to 1) prove uniqueness of the solutions of the 
continuous formulations, 2) perform more numerical experiments to understand 
the role played by the penalty terms, 3) still improve the a priori error estimates for 
the Discontinuous Galerkin Method of Baumann and Oden, 4) derive rigorous a 
posteriori error estimates for the various formulations. 

A. Lemmas 

A.l. Discrete Schwarz Inequality 

Lemma A.l Let {%} and {bi} define two sequences ofN real numbers. Then 

N /N      \1/2 /N      \ 1'1 

Proof: We shall show the discrete Schwarz inequality for N = 2 first. We have: 

(fli&i + a2b2)
z = a\b\ + a2b2 + 7a\b\a2b2 

= (flf + a\){b\ + b\) - a\b\ - a\b\ + 2a1b1a2b2 

= {a\ + a\){b\ + b\) - {axb2 - a2b1f 

<(al+a2
2)(bl + b2

2) 
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so that: 

a\b\ + a2b2 < Ja\ + a\Jb\ + b\. 

The result is easily extended to N > 2 by recursivity D 

A.2. Multiplicative Trace Inequalities 

Lemma A.2 Let Q define a star-shaped domain with boundary dQ. as shown in Fig. 4. 
Then, for all veH^Q.) 

v\\o,da ^ -j^xr f IMIO,Q + SUP|x||l^llo,n||Vü||o,n   . 
lni   x   \ „en / 

(A.2) 

ß |x| < x.n 

Figure 4. Star-shaped domain. 

Proof: Let O G Q be the origin and let n denote the unit normal outward vector on 
dQ.. From the definition of a star-shaped domain, there exists a positive constant ß 
such that 

)0|x| <x-n. 

Applying Green's Theorem for the vector field uzx, we have: 

/    u2x ■ n ds = / V • (uzx) dx. 
Jdn Jo. 

By the property of star-shaped domains, the first integral is shown to be bounded 
below: 

/   w2x-nds>/3 inf |x| /    u2ds> ß inf |x|||w||naQ. 
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On the other hand, the second integral is bounded above: 

f V-(u2x)dx = f u2V-x + x-Vu2dx 
Ja Ja 

= I 2u2dx + f lux-Vudx 
Ja Ja 

<2\\u\\ln+ [ \ux-Vu\dx 
J Li 

<2||«||§ü + 2sup|x| / \u\\Vu\dx 
IPD     Ja xea 

|2 
<2||M||6,ü + 2SUP|X|||M||O,ü||V«||0)O 

xea 

Using both bounds, we arrive at: 

\\»\\o,da <  ,wf |vi f IMIo,o + SUP |x|ll"llo,o||Vtt||o,Q J 
£daW V *ea / 

which completes the proof. □ 

Lemma A.3 Let K be a triangle or a quadrilateral such that hK < gpK (shape regular). 
Then, for all veH^K), 

MOM < C (h\M2o,K + NMI V»||0|ic) . (A.3) 

where C is a positive constant. 

Proof: Let the origin O be the center of the inscribed circle in K with radius PK/2. 
We therefore have: 

sup |x| < hK 
xeK 

inL\x\>PK>hK/Q 
x€dK 

so that from (A.2) 

2Q 
"llU<^(llMHo^ + ^l|»||o,d|VW||o,K) 

1 
<2Q h-||M|lo,K+ll"llo,x||VM||0iJC 

K 

The proof is complete when choosing C — 2Q. D 
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A.3. Poincare-Friedrich's Inequalities 

Lemma A.4 Let Q, be an open, bounded, connected domain o/R2 with Lipschitz boundary 
dQ.. Let vetfQ. such that 

f vdx = 0. (A.4) 
Ja 

Then 

IMIo,o < C\\ Vo||0)o (A.5) 

where C — C(fl) is a positive constant. 

Proof: See Schwab [21, p.350] and Brenner and Scott [8, p.102]. D 

Lemma A.5 Let z 6 PPK(K) and z be the average ofz onK,z = (fKzdx)/\K\. Then 

||Z-2||O,K<CMVZ||O,K (A-6) 

where C is a positive constant independent of K and z. 

Proof: Let z e PpK(K) and v — z — z. Then 

/ vdx=     z — zdx= / zdx— / zdx = \K\z — z\K\ —0. 
Ja Ja Ja Ja 

By a scaling argument and Lemma A.4, 

\\V\\O,K < ChK\\0\\Ojk < C(k)hK\\Vv\\0jk < CftK||Vü||o,jc 

Substituting z - z for v, it follows that ||Z-Z||0)K < ChK\\ V(z - Z)||0,K> in other 
words, since z is constant, ||z — Z||O,K < ChK\\ VZ||O,JC- C 

A.4. Inverse Property 

Lemma A.6 Let z e PPK(K). Then 

||Vz||o,K < C^Hzll  K (A.7) 

Proof: See Schwab [21, p.208]. D 
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A.5. Interpolation Error Estimates 

Lemma A.7 Let K be a triangle or parallelogram element of the partition Th and u a 
function in HS(K). There exists a positive constant C depending on s and Q but independent 
ofu, pK, and hK, and a sequence zp e PPK (K), pK = 1,2,..., such that for anyq,0<q<s 

hß~q 

\\u-zp\\^<C^\\u\\s,K, s>0 (A.8) 
PK 

hß~l/1 1 
||«-zp||o,7<C-^||«|U, s>- (A.9) 

PK 

where /z = min(pK + l,s),hK = diam (K) and 7 C dK. 

Proof: See Babuska and Suri [3,4]- D 
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